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Automated Offline Programming for Robotic Welding 
System with High Degree of Freedoms 

Zengxi Pan, Joseph Polden, Nathan Larkin, Stephen van Duin,  
and John Norrish 

Faculty of Engineering, University of Wollongong, NSW, 2522, Australia 
{zengxi,jwp973,nlarkin,svanduin,johnn}@uow.edu.au 

Abstract. Although robotics based flexible automation is an intriguing prospect 
for small to median enterprises in the era of the global competition, the 
complexity of programming remains one of the major hurdles limiting its 
applications. This paper presents an automated offline programming (AOLP) 
method to address this issue. AOLP is software that automatically plans and 
programs for a robotic welding system with high Degree of Freedoms (DOFs). 
It takes CAD model as input, and is able to generate the complete robotic 
welding code without any further programming effort. 

Keywords: offline programming, lean automation, welding, CAD, high DOFs. 

1   Introduction 

Although robotics based flexible automation is an intriguing prospect for small to 
median enterprises (SMEs) in the era of the global competition, the complexity of 
programming a robotic system remains one of the major implementation challenges. 
In an industrial environment, there are two main methods of robot programming; 
online programming (including lead-through and walk-through) and offline 
programming (OLP) [1]. Manual online programming requires no additional 
hardware and software other than those to be used for the manufacturing process. 
However, the generated program is very inflexible and it can only handle simple robot 
paths. On the other hand, while OLP methods can generate flexible robot programs 
for complex robot paths, its high cost can only be justified for a large production 
volume. Also, programming a robotic system using typical commercially available 
OLP software is still a manual process. It does not reduce the programming overhead. 
Instead, OLP shifts the burden of robot programming from the robot operators 
jogging robot manipulator in the workshop to the software engineers, who ‘jog’ a 
simulated robot in a computer modeled environment. OLP provides advantages such 
as reusable code, flexibility for modification, and less system downtime during 
programming stage. However, the time and cost required to generate code for a 
complex robotic system using OLP is expected to be similar to if not more than that 
using online programming. Currently, for a complex manufacturing process with 
small to median production volume, very few robotic automation solutions are used to 
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replace manual production due to this expensive and time-consuming programming 
overhead.  

An example is in armored vehicle production where over 500 welds are required to 
assemble a large vehicle hull from steel plates. For this complex workcell involving 
robots with 13 Degrees of Freedom (DOFs), manual online program methods required 
more than six months to generate the program, while the cycle time of the welding 
process itself is only sixteen hours. In this case, the programming time is 
approximately 90 times of the production time. When the vehicle has a few variants 
and the production volume for each variant is low, the manufacturer would rather go 
back to manual welding process even though the robotic welding system was setup, 
simply due to the long programming time. A more efficient and cost-effective robot 
programming method needs to be developed to address this issue. 

This paper presents an automated offline programming (AOLP) solution to 
automatically plan and program a robotic welding system with high DOF 
manipulators. It uses a CAD model as input, and is able to generate the complete 
robotic welding code without any further programming effort. AOLP can generate 
collision-free and singularity-free trajectories for the complete system including the 
linear rail, auxiliary positioning robot, and welding robot automatically. Following 
this introduction Section, Section two describes the configuration of the welding 
system. The components and steps of AOLP are presented in Section three and 
Section four respectively. Section five presents the performance of AOLP. A 
summary and some discussions are provided in Section six followed by 
acknowledgement and references. 

2   The Robotic System  

The layout and CAD model of the robotic welding workcell are shown in Fig. 1. Due 
to the high number of seams to be welded and the complex hull geometry, a specific 
robotic cell was designed to maximize the number of external and internal seams that 
can be reached by the welding robot. To satisfy the cycle time requirement, the final 
design of the cell includes two identical welding systems and two preheating systems. 
The welding system is a robot-on-robot-on-rail setup, while the preheating system is a 
robot-on-rail setup. There are a total of six articulated robots and four linear rails in 
the workcell.  

Each welding system in the cell consists of a small welding robot, a large auxiliary 
robot and a linear rail. The small welding robot is mounted on the wrist of the large 
auxiliary robot, which is sitting on the linear rail. The vehicle hull is mounted on a 
rotating trunion to allow the welding robot to maintain a down-hand welding position 
and provide access to areas such as the roof of the hull, or internal access through an 
opening such as the windscreen frame. The robotic cell features sensors such as a 
laser profile scanner and pyrometer to aid in the re-calibration and accurate welding 
of each individual seam. The complexity of this robotic system poses many 
difficulties for programming either using online or offline methods. 
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Fig. 1. (a) Robotic system for vehicle hull welding developed by RTA Automation (b) CAD 
model of robotic system 

3   The Elements of AOLP 

3.1   Robot Kinematics 

The DH (Denavit-Hartenberg convention) models of the industrial manipulators used 
in the system were constructed. For the convenience of calculation, the robotics 
toolbox for MATLAB [4] was used for forward kinematics calculation. The inverse 
kinematics was formulated using closed-form symbolic equations based on [5], which 
is much more efficient than iterative solutions. Also, unlike the iterative method, 
which can only find a solution closest to the given reference joint target, the closed 
form method is able to find solutions for all possible robot configurations, which is 
much more useful in robot trajectory and motion planning. Currently the inverse 
kinematics of Kawasaki FS06L, ZX300, ABB IRB4400 [6, 7] robots have been 
formulated. Note that this close form inverse kinematic solution is only suitable for 
robots with 6 DOF that feature a spherical wrist. 

3.2   CAD Representation and Clash Model 

As the clash detection among the different parts in the system, such as robot, tool and 
environment, is the most computationally intensive, a precise and prompt collision 
detection method is critical for successful OLP software. A simplified bounding 
volume method is used here for efficient collision checking, where speed is more 
important than exactness and visualizations [8]. The clash model for the moving parts 
(robot, welding torch and other tools attached) and the fixing parts (the workpiece, 
trunion, other fixtures, etc) are modeled differently for fast clash check, as shown in 
Fig. 2.  

A sphere-bounding model was used to model the robot and tool. A group of 
spheres with different diameters represent the robot and tool as collision detection 
using spheres is most efficient. Use of a multi-level sphere model was implemented 
with fewer spheres providing a rough collision check and more spheres for final 
verification. The clash model for the work piece, fixtures and environment has been 
modeled using a modified bounding box model (‘plate’ model), which treats all 
objects as a plate with vertexes on a surface, a normal direction and thickness. 
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Fig. 2. (a) Sphere model of an ABB IRB4400 robot; (b) ‘Plate’ model of the workpiece 

Since the objects in the workcell are modeled using very simple geometries, the 
collision check becomes very efficient. There are only two different cases, collision 
between a sphere and a plate (robot-workpiece, tool-workpiece) or between two 
spheres (robot-tool). Both in-process motions and transition motions compute 
distance check along the path, and search if necessary to avoid collision and maintain 
a reasonable distance between tool/robot and obstacles.  

3.3   Path Planning 

The search algorithm for path planning must produce weld motions that are smooth, 
collision free, and within the reach of the robot, avoiding singularities and joint limits. 
Additionally, the search must produce paths that are as process-optimal as possible in 
terms of torch pose relative to weld geometry. It is further desired that the planning 
algorithm be very fast when the planning problem is simple, but able to find solutions 
for difficult problems when they arise [2]. 

The complexity of path planning grows exponentially with the number of DOFs, 
which is well known as curse of dimensionality. Since the whole system has 13 DOFs 
with a robot-on-robot-on-rail setup, a brute-force search through all robot 
configurations is very time consuming and not practical if the system is treated as a 
single mechanism. As the large auxiliary robot is used to improve the reachability of 
the system and is stationary during welding, path planning is broken into three steps: 

1) Auxiliary rail and robot positioning,  
2) Weld torch placement, and 
3) Weld path planning.  

While searching a path for the welding robot, the motion of auxiliary robot/rail is 
sampled to provide base position for the welding robot, which is considered as a tool 
attached on the auxiliary robot with a certain pose. This method dramatically reduces 
the complexity of the AOLP process, avoiding the case of selecting an optimal 
solution from an infinitive number of solutions.   

Transition motions between the welding paths are computed using Probabilistic 
Roadmap (PRM) algorithm [9,10,11]. The algorithm computes random trajectories in 
joint space and attempts to connect the trajectories to seek a feasible path. The PRM 
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has shown to be very successfully in solving difficult path planning problems in high 
dimensional configuration spaces. 

4   The Steps of AOLP 

4.1   Preparation 

To make the software easy to use for robot operators with limited computer skills, an 
Excel spreadsheet is created at the preparation stage as the input for the programming 
stage in AOLP. Information including sphere-bounding models for the robots and 
tools, ‘plate’ model for the workpiece and fixtures, tag definition of welding seams, 
zone information for auxiliary robot/rail to position the welding robot, are saved in a 
single Excel spreadsheet.  

The spreadsheet is generated using a manual or automated processes in DELMIA, 
a commercial OLP package. Using a combination of VB script and manual selection, 
the CAD information for robots, tooling, workpieces, and fixturing is converted into 
the MATLAB sphere-bounding model or ‘plate’ model. To generate the ‘plate’ model 
of workpiece, the vertex coordinates of one surface on each plate are extracted from 
CAD in anti-clockwise order and the plate thickness calculated by selecting a vertex 
on the other surface. This data is later read by MATLAB to generate surfaces that can 
be used for collision detection in path planning.  

Weld seams are also generated using DELMIA VB script. Each weld seam is 
defined by two tags, which denote the beginning and end of the seam along with 
nominal torch pose. When defining the tags, the user first selects the edge that 
represents the weld seam location followed by the two surfaces that form the seam to 
calculate the orientation of the torch at the welding position. This data is also stored in 
the Excel spreadsheet.  

4.2   Robot Program Generation 

As shown in Fig. 3, the user interface of the OLP has three panels from left to right; 
setup, OLP and Full path. In the Setup panel, the user selects which welding seam to 
program and AOLP will load workcell information such as trunion orientation from 
the Excel spreadsheet. 

The first step is to determine possible positions for the auxiliary robot. Sampling 
the space around the appropriate hull opening for internal seams or space around the 
weld seam for external welds for collision and reachability establishes possible weld 
robot base positions. Typically 343 positions are tested with around 50 found to be 
suitable.  

In Gas Metal Arc Welding (GMAW), there is an optimal torch orientation relative 
to the plates to be joined, and although the torch can be rotated around the axis of the 
filler wire, tool orientation is limited as to not affect weld quality. However, there is 
added freedom to reach welds into corners where optimal torch orientation is 
sacrificed for access. This adds complexity to the AOLP system as it needs to 
maximize flexibility to access difficult areas, but apply optimal the torch angle to 
maximize weld quality. 
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Fig. 3. User interface of AOLP 

The torch placement algorithm samples the torch orientation space to determine a 
list of possible collision free torch paths without the robotic manipulator. The user can 
then manually pick the preferred angle or let the torch placement algorithm determine 
the most optimal solution. 

After a good torch orientation is found, the next step is to find which auxiliary 
robot position to use to position the base of the welding robot and which robot 
configuration guarantees a collision free reachable solution for the welding path. The 
welding path is sampled in increments, currently 100mm, and each collision free 
auxiliary robot position is tested until a good solution is found. 

A temperature measurement position is automatically selected in the middle of the 
weld seam. The temperature is measured before welding to ensure that the preheat 
requirement of the weld procedure is satisfied. Weld seams are also locally calibrated 
using a laser profile sensor. There are various options to calibrate the weld seam 
position depending on the seam geometry. For example, a corner position is 
determined by scanning the seam to be welded along with another seam that intersects 
with the weld corner. The user can select which calibration method to use for choose 
which other geometry is to be used. The AOLP algorithm incorporates the 
temperature measurement and calibration points into the generated collision free path. 

With the weld path, including calibration and temperature measurement 
determined, the next step is to find the transition motions to translate the welding 
robot from the folded position to the start of the weld path and back to the folded 
position. A probabilistic roadmap based algorithm is used here to generate random 
assisted tags to build up the path.  

The AOLP software also provides simulation features. The user can either display 
the simulation during the programming or after a robot code is generated. This 
provides useful information for the user to understand what is happening during the 
offline programming and help adjust parameters if the AOLP has troubles 
programming a specific seam. 
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A post-processor is an important element of an OLP system. Once the complete 
motion of the system is generated, it needs to be converted to the robot language of a 
specific robot manufacturer as well as adding all communication and I/O code [3]. 
The post-processor is able to translate output statements to the ABB RAPID and 
Kawasaki AS language.  

5   Results 

In flexible automation, reuse of a robotic system to manufacture variants of a single 
product or many different products is important and minimizing system downtime due 
to system reprogramming is a key technology to reducing cost and increasing 
flexibility. Due to the complexity of the aforementioned robotic system, it took more 
than six months to manually (online) program welds for a specific vehicle model. For 
any new model, reprogramming using similar conventional methods will result in 
similar lengthy programming times. It is estimated that each new seam will take 
average 4 hours to reprogram. For a new model with 200 new seams, this equates to a 
production loss of around 3 months simply wait for the system to be reprogrammed. 
Using off-the-shelf OLP software, the total programming time will be similar to 
online programming. However, as programming can take place offline, system 
downtime is minimized taking around 1 hour to test each new weld seam. Using 
AOLP, robot code for each seam takes less than 5 minutes to generate. The 
preparation stage, during which the Excel spreadsheet was set up with system model 
information, took 4 weeks. Similar system downtime to OLP is needed to test the 
generated code. The system programming time using each method is compared in 
Table 1. 

Table 1. Comparison of programming time using online programming, OLP and AOLP (Unit: 
Weeks) 

6   Summary 

AOLP provides an automatic means of generating robot code, much faster and more 
reliably than previous attempts using either online or offline programming. By 
reducing the expense associated with programming overhead, it improves the 
commercial viability for robotics-based lean automation for manufacturing low 
volume or one-off products, which is common for small to medium enterprise 
(SMEs). 

AOLP is independent of the process to be accomplished, or any particular robot or 
process hardware. This provides opportunity for a large domain of potential 

 Offline time (system 
setup and preparation) 

System 
downtime 

Total lead time 

Online  2 12 14 
OLP 8 4 12 
AOLP 4 4 8 
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applications in a variety of industries. Although the current implementation of AOLP 
is for welding applications, the process modeling and path planning capability has 
applicability to a number of other industrial applications. 
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